

Expansion of HPP into New Product Categories Opportunities and Challenges

Dr. Errol Raghubeer, Senior VP of HPP Science and Technology, Avure Technologies

Discussion Topics

- Pressure levels in food applications
 - Keys to commercial adoption
 - ·Global usage
 - ·HPP market value
 - Factors that determine HPP conditions & efficacy
 - Typical commercial processing conditions
 - HPP science & technology overview
 - Microbiology
 - ·Chemistry
 - ·Covalent bonds
 - ·Hydrocolloids (starches/gums), proteins
 - Product formulations
 - •Growth in common applications
 - Expansion into new product categories
 - Packaging

HPP food applications

Key Factors for Adoption of HPP

1. Inactivation of pathogens

- Meet global regulatory requirements
- Ensures product safety

2. No heat or preservatives

- -Clean label
- -High consumer appeal
- -Fresh taste

3. Maintains Nutrition

- -No damage to vitamins
- -No damage to bioactive compounds
- -Raw Quality

4. Increased Shelf-life

- -Reach wider markets
- -Juice products >4 months
- -Extends quality

5. New products

- -Value added refrigerated products
- -Healthy formulations
- -Improved organoleptic properties

HPP Market – Geographies ~ 45 countries

Source: visiongain 2016

Source: visiongain 2016

Major Product Category using HPP (%) Through November, 2016 (Global)

Continued growth that is expected to accelerate

applications, new categories, and extension of existing HPP applications.

Source: visiongain 2016

Major Product Category using HPP (%) Through November, 2016 (Global)

Overview of HPP Science & Technology

Microbiology

Chemistry

Product Development

Important Microorganisms for HPP Pasteurization

- Vegetative pathogens
 - > Salmonella
 - *≻ E. coli* O157:H7
 - > E. coli STEC 6 (proposed new Regulatory requirements)
 - > Listeria monocytogenes
 - > Campylobacter
 - ≥ Vibrio spp.
- Other pathogens: Viruses (product/regulation dependent); Parasites
- Spoilage microorganisms
 - > Lactic acid bacteria: most critical for HPP
 - Aerobic and anaerobic plate count (APC/TPC/SPC)
 - > Yeast
 - >Mold
 - >Total coliform bacteria
- Bacterial spores are not affected in current applications

Important Facts to Note - Chemistry

·HPP does not affect covalent bonds

- >In current HPP application
- Can have disruption >150,000 psi

·Vitamins and other bioactive compounds are largely unaffected

> Enzymes

Proteins unfold with pressure

- > Water molecules are forced into hydrophobic core of protein
- > Disruption of ionic bonds
- > Hydration forces unfolding
- > Leads to protein denaturation

Gelatinization starches

- > Effects on hydrocolloids
- >Increased viscosity
- Adjust formulation to compensate

Refrigerated Food Guidelines

FDA/FSIS guidelines to ensure product safety

- > Clostridium botulinum: Non-proteolytic and proteolytic strains
 - Temperature
 - pH
 - Water activity
 - Water-phase salt content
 - Additive
 - Storage/distribution temperature

Factors that affect efficacy of HPP on Microorganisms Determines HPP conditions

- pН
- Acidulant
- Water activity (A_w)/Brix
- Ingredients
- Nutrient content
- Antimicrobial constituents
 - > Naturally present
 - >> Added

Typical processing conditions for food beverage pasteurization

- Pressure
 - Microbial inactivation4,500 to 6,000 bars (70,000 to 87,000 psi)
- Hold Time
 - > Generally 1 to 3+ minutes pH, Brix (A_w), Ingredients
- Process Temperature
 - >4 to 40 °C
 Organoleptic, functionality

Continued growth in established categories

- Ready to eat (RTE) meat
- Avocado-based products
- Juice and beverages
- Seafood

Commercial HPP RTE Meat Products: Shelf-life 90 to >120 days

Effects of HPP on inoculated pathogens in sliced Roast Beef

Effects of HPP on spoilage microorganisms in RTE meat: No spoilage after 6 months

Extension of Quality of RTE meats by HPP

Extended SL & Quality of HPP Meat

Microbiology

- Food safety (FDA 5-log Pathogen Rule) for fruit juice:
 - > Salmonella
 - > E. coli O157:H7
 - > Listeria monocytogenes

Cryptosporidum parvum

May need additional validation for "newer" formulations (greater regulatory scrutiny

- Note: Fruit juice with pH ≤4.6 (FDA Juice HACCP Regs. 2004). HPP approval by FDA 1999 – AVURE.
- Low acid juice: C. botulinum hazard FDA guidance (CFSAN, 2007)
- Shelf-life

Spoilage bacteria Yeast & molds

Effects of HPP on vegetative pathogens in Apple/vegetable juice blend:5930 bars/2mins/4°C

Effects of HPP on pathogens in Nut Milk beverage: 5930 bars, 3 min

Effects of HPP on pathogens in coconut water 86,000 psi/3 minutes 4° C water

Shelf-life extension of raw coconut water, pH 5.2: 5930 bars, 3 min, 4° C

Update: Coconut water paper is under peer review for publication in *the Journal of Food Protection* as requested by the US FDA

Applications - Juices

Newer Products in Market - USA

Large Companies involvement in HPP Beverage Market

Coca Cola

Starbucks/Evolution Fresh

Bolthouse Farms/Campbell's

Pepsi

Avocado Products

HPP - Seafood

- Food safety
- Shelf-life extension
- Process enhancement
 - Shucking of Crustaceans/shellfish

Fresh Fish

Growth in "newer" Product Categories

- Ready meals
- Soups
- Baby Foods/snacks
- Dips, sauces, salad dressings
- Fruit toppings
- Beverages, "waters", tea, coffee
- Raw protein
 - »Pet Foods
 - »Marinated meat & poultry
- Meat protein replacement products
- Dairy

Key Factors for Expansion

Health & Nutrition

- > Preservative free
- >Clean label
- > More protein in diet
- > Freshness

Convenience with freshness

- → Greater urban population growth
- >Increased income
- > Fresh home made appeal
- **Food Safety**
- **Extended refrigerated shelf-life**

Ready Meals – Fastest growing category

- Food Safety
- ·Extended Refrigerated SL
- ·Clean Label
- ·Convenience
- Home cooked appeal
- ·Needs validation (FDA/FSIS)
 - > Replication
 - > Components/composite
 - > Refrigerated Food Guidelines
 - > Packaging

Thai Chicken Noodle Meal Kit

Ready Meals

Thai Chicken Noodles

HPP RTE "Ready" Meals

HPP Hummus – Commercial Examples

Hummus Production

Significant growth

- Preparation of beans
 - Raw peas, in house preparation: Soak, boil and "grind"
 - Raw Chick peas flour/grounds
 - Canned (retorted) chickpeas
 - Aseptic cooked, ground
- Aseptic cooked, ground is becoming more popular

Custom prepared

More consistency as a raw material

FDA Refrigerated Food Guidelines

Mixing under vacuum is better

Reduce entrapped air

Package integrity

- Entrapped air will cause damage to containers (cups)
- Good OTR properties
- > 90 to 120 days of shelf-life

Baby Foods – Fruit based

Baby Foods - fruit based, pH ≤4.6

HPP Soups

HPP RTE Sauces/Soups

Cucina Fresca™ Pasta Sauces are **all-natural** and contain no artificial ingredients. All of our sauces are manufactured with state-of-the-art High Pressure Processing (HPP) technology to deliver a product that stays fresh longer without preservatives, additives, or heat processing.

Effects of HPP on *L. monocytogenes* in vegetable-based "burger" and meals

HPP of Raw Proteins Three Main Applications

- Food Safety
 - > Beef, Pork, Turkey, Chicken
 - > Raw pet food
- Meat Tenderization & Yield Improvement
 - Pre-rigor (AVURE/Hormel Project) Beef Pork
 - Post-rigorBeefPork
- Shelf-life
 - > Whole muscle

Raw Protein: Pet Food

Use of HPP in Pet Food Production

HPP Pet Food

Marinated Beef

HPP Dairy Applications

Milk

Soft Cheese

Yogurt-based Products

Cheese

COL

COL

COL

Dairy Beverages

2017

Packaging

·Film Type

- > High Barrier (Foil, KPET, EVOH)
- > High Strength (Nylon)
- ➢ Biodegradable Not suitable for HPP Organic e.g. sugarcane, corn

Bottles and containers

- >PP not appropriate due to high OTR
- >PET most commonly used
- >PET EVOH
- ➤ Bottle caps Double Seal: BERICAP and Silgan Bottle lip must be even

Note on Packaging

Good Oxygen barrier container is essential

PP; PE; PLA not appropriate

Closure

Induction seal OR

Double seal caps from Bericap or Triple (double) seal from Silgan

>90,000 psi Hydraulic pressure will push past threads

Even if water is able to compromise outer seal; hydraulic pressure is diminished and cannot pass inner seal (BERICAP)

AVURE HPP laboratory support - supports our tollers' customers

Thank You!