Expansion of HPP into New Product Categories Opportunities and Challenges

2017 HPP SUMMIT
Hosted by Universal Pure

Dr. Errol Raghubeer, Senior VP of HPP Science and Technology, Avure Technologies
Discussion Topics

- Pressure levels in food applications
 - Keys to commercial adoption
 - Global usage
 - HPP market value
- Factors that determine HPP conditions & efficacy
- Typical commercial processing conditions
- HPP science & technology overview
 - Microbiology
 - Chemistry
 - Covalent bonds
 - Hydrocolloids (starches/gums), proteins
 - Product formulations
- Growth in common applications
- Expansion into new product categories
- Packaging
HPP food applications

Pressure (PSI/Bars)

Relative Pressures

- Sea level: 14.571
- Challenger Deep: 15,750/11,100
- Non-Microbiol. Food Appl.: 30,000/2,000
- HPP Shellfish: 45,000/3,100
- HPP acidic products: 75,000/5,200
- HPP low acid products: 87,000/6,000
- PATS/TAPS - Low Acid SS: 120,000+8,000
Key Factors for Adoption of HPP

1. Inactivation of pathogens
 - Meet global regulatory requirements
 - Ensures product safety

2. No heat or preservatives
 - Clean label
 - High consumer appeal
 - Fresh taste

3. Maintains Nutrition
 - No damage to vitamins
 - No damage to bioactive compounds
 - Raw Quality

4. Increased Shelf-life
 - Reach wider markets
 - Juice products >4 months
 - Extends quality

5. New products
 - Value added refrigerated products
 - Healthy formulations
 - Improved organoleptic properties
HPP Market – Geographies
~ 45 countries

Figure 6.1 Regional HPP Foods Markets Forecasts ($bn, AGR%), 2016-2026

Figure 6.3 Regional HPP Foods Markets Share Forecast (% Share), 2016

Source: visionsain 2016
Major Product Category using HPP (%)
Through November, 2016 (Global)

Figure 4.1 Global HPP Food Market Forecast ($bn, AGR%), 2016-2026

- Continued growth that is expected to accelerate
- Driven by new applications, new categories, and extension of existing HPP applications.

Source: visiongain 2016
Major Product Category using HPP (%) Through November, 2016 (Global)

- Meats and Meals: 30.7%
- Wet Salads+Deli: 17.5%
- Juices/Beverages: 13.5%
- Toll: 12.8%
- Toll Juices: 12%
- Seafood: 8.3%
- Fruits: 5.2%
Overview of HPP Science & Technology

- Microbiology
- Chemistry
- Product Development
Important Microorganisms for HPP Pasteurization

- **Vegetative pathogens**
 - *Salmonella*
 - *E. coli* O157:H7
 - *E. coli* STEC 6 (proposed new Regulatory requirements)
 - *Listeria monocytogenes*
 - *Campylobacter*
 - *Vibrio* spp.

- **Other pathogens:** Viruses (product/regulation dependent); Parasites

- **Spoilage microorganisms**
 - Lactic acid bacteria: most critical for HPP
 - Aerobic and anaerobic plate count (APC/TPC/SPC)
 - Yeast
 - Mold
 - Total coliform bacteria

- **Bacterial spores are not affected in current applications**
Important Facts to Note - Chemistry

• HPP does not affect covalent bonds
 ➢ In current HPP application
 ➢ Can have disruption >150,000 psi

• Vitamins and other bioactive compounds are largely unaffected
 ➢ Enzymes

• Proteins unfold with pressure
 ➢ Water molecules are forced into hydrophobic core of protein
 ➢ Disruption of ionic bonds
 ➢ Hydration forces unfolding
 ➢ Leads to protein denaturation

• Gelatinization starches
 ➢ Effects on hydrocolloids
 ➢ Increased viscosity
 ➢ Adjust formulation to compensate
Refrigerated Food Guidelines

FDA/FSIS guidelines to ensure product safety

Clostridium botulinum: Non-proteolytic and proteolytic strains

- Temperature
- pH
- Water activity
- Water-phase salt content
- Additive
- Storage/distribution temperature
Factors that affect efficacy of HPP on Microorganisms
Determines HPP conditions

- pH
- Acidulant
- Water activity (A_w)/Brix
- Ingredients
- Nutrient content
- Antimicrobial constituents
 ➢ Naturally present
 ➢ Added
Typical processing conditions for food beverage pasteurization

- **Pressure**
 - Microbial inactivation
 - 4,500 to 6,000 bars (70,000 to 87,000 psi)
- **Hold Time**
 - Generally 1 to 3+ minutes
 - pH, Brix (A_w), Ingredients
- **Process Temperature**
 - 4 to 40 °C
 - Organoleptic, functionality
Continued growth in established categories

- Ready to eat (RTE) meat
- Avocado-based products
- Juice and beverages
- Seafood
Commercial HPP RTE Meat Products: Shelf-life 90 to >120 days
Effects of HPP on inoculated pathogens in sliced Roast Beef

- HPP Listeria monocytogenes
- HPP Salmonella
- HPP E. coli O157:H7
- Non-HPP Listeria monocytogenes
- Non-HPP Salmonella
- Non-HPP E. coli O157:H7

<10 CFU/g with corresponding Neg/25g Enrichment results plotted as 0

Days after HPP

Log CFU/g
Effects of HPP on spoilage microorganisms in RTE meat: No spoilage after 6 months
Extension of Quality of RTE meats by HPP
Extended SL & Quality of HPP Meat

Non-HPP Control

HPP

Figure 6
Non-HPP Control Roast Beef

Figure 6
HPP Roast Beef
Microbiology

- Food safety (FDA 5-log Pathogen Rule) for fruit juice:
 - *Salmonella*
 - *E. coli O157:H7*
 - *Listeria monocytogenes*
 - *Cryptosporidium parvum*

 May need additional validation for “newer” formulations

 (greater regulatory scrutiny)

- **Note:** Fruit juice with pH ≤4.6 (FDA Juice HACCP Regs. 2004). HPP approval by FDA 1999 – AVURE.
- Low acid juice: *C. botulinum* hazard – FDA guidance (CFSAN, 2007)

- Shelf-life
 - Spoilage bacteria
 - Yeast & molds
Effects of HPP on vegetative pathogens in Apple/vegetable juice blend: 5930 bars/2mins/4°C
Effects of HPP on pathogens in Nut Milk beverage: 5930 bars, 3 min

pH: 6.4
Effects of HPP on pathogens in coconut water
86,000 psi/3 minutes 4°C water
Shelf-life extension of raw coconut water, pH 5.2: 5930 bars, 3 min, 4° C

Update: Coconut water paper is under peer review for publication in the Journal of Food Protection as requested by the US FDA
Newer Products in Market - USA

Caribé Juices

Bringing you the exotic taste of the Caribbean in the healthiest way possible.

AVURE Confidential 2016
Large Companies involvement in HPP Beverage Market

Coca Cola

Starbucks/Evolution Fresh

Bolthouse Farms/Campbell’s

Pepsi
Avocado Products

NO PRESERVATIVES, ADDITIVES OR FLAVOURANTS
HPP – Seafood

- Food safety
- Shelf-life extension
- Process enhancement
 - Shucking of Crustaceans/shellfish
Growth in “newer” Product Categories

• Ready meals
• Soups
• Baby Foods/snacks
• Dips, sauces, salad dressings
• Fruit toppings
• Beverages, “waters”, tea, coffee
• Raw protein
 » Pet Foods
 » Marinated meat & poultry
• Meat protein replacement products
• Dairy
Key Factors for Expansion

- **Health & Nutrition**
 - Preservative free
 - Clean label
 - More protein in diet
 - Freshness

- **Convenience with freshness**
 - Greater urban population growth
 - Increased income
 - Fresh home made appeal

- **Food Safety**

- **Extended refrigerated shelf-life**
Ready Meals – Fastest growing category

- Food Safety
- Extended Refrigerated SL
- Clean Label
- Convenience
- Home cooked appeal

- Needs validation (FDA/FSIS)
 - Replication
 - Components/composite
 - Refrigerated Food Guidelines
 - Packaging
Thai Chicken Noodle Meal Kit
Ready Meals

Thai Chicken Noodles
HPP RTE “Ready” Meals

Bunless Turkey Burger
Savory, lean turkey burger with caramelized mushrooms and onions, served with a side of roasted cinnamon-chili sweet potatoes.

Barbeque Chicken
Grilled chicken breast brushed with sweet and tangy barbeque sauce, served with flame-roasted corn, peppers, and chili potatoes.

Chicken Parmesan
Parmesan cheese melted over an herb-crusted chicken breast, topped with pomodoro sauce and served with whole wheat pasta.
HPP Hummus – Commercial Examples
Hummus Production

- **Significant growth**
 - Preparation of beans
 - Raw peas, in house preparation: Soak, boil and “grind”
 - Raw Chick peas flour/grounds
 - Canned (retorted) chickpeas
 - Aseptic cooked, ground
 - Aseptic cooked, ground is becoming more popular
 - Custom prepared
 - More consistency as a raw material
 - FDA Refrigerated Food Guidelines
 - Mixing under vacuum is better
 - Reduce entrapped air
 - Package integrity
 - Entrapped air will cause damage to containers (cups)
 - Good OTR properties
 - 90 to 120 days of shelf-life
Baby Foods
- fruit based, pH ≤4.6
HPP Soups
Cucina Fresca™ Pasta Sauces are all-natural and contain no artificial ingredients. All of our sauces are manufactured with state-of-the-art High Pressure Processing (HPP) technology to deliver a product that stays fresh longer without preservatives, additives, or heat processing.
Effects of HPP on *L. monocytogenes* in vegetable-based “burger” and meals
HPP of Raw Proteins
Three Main Applications

- **Food Safety**
 - Beef, Pork, Turkey, Chicken
 - Raw pet food

- **Meat Tenderization & Yield Improvement**
 - Pre-rigor (AVURE/Hormel Project)
 - Beef
 - Pork
 - Post-rigor
 - Beef
 - Pork

- **Shelf-life**
 - Whole muscle
Raw Protein: Pet Food
Use of HPP in Pet Food Production

Raw Materials

- HPP
- Refrigerated 24 hours

- Clean Room
 - Freeze
 - Refrigerate

- Form

Freeze Dry

Heat Dry

- Market Frozen or Refrigerated

- Market RT

- Market RT/Ref

- Market Refer

- Market Frozen
HPP Dairy Applications

- Milk
- Soft Cheese
- Yogurt-based Products
- Cheese
Dairy Beverages

Mango and Passionfruit
Refreshing bottled breakfast
High in natural protein
Packaging

• Film Type
 ➢ High Barrier (Foil, KPET, EVOH)
 ➢ High Strength (Nylon)
 ➢ Biodegradable – Not suitable for HPP
 Organic e.g. sugarcane, corn

• Bottles and containers
 ➢ PP not appropriate due to high OTR
 ➢ PET most commonly used
 ➢ PET EVOH
 ➢ Bottle caps
 Double Seal: BERICAP and Silgan
 Bottle lip must be even
Note on Packaging

Good Oxygen barrier container is essential
PP; PE; PLA not appropriate

Closure
Induction seal OR
Double seal caps from Bericap or Triple (double) seal from Silgan

>90,000 psi
Hydraulic pressure will push past threads

Even if water is able to compromise outer seal; hydraulic pressure is diminished and cannot pass inner seal (BERICAP)
AVURE HPP laboratory support - supports our tollers’ customers
Thank You!